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ABSTRACT
In recent years, the ever-increasing impact of memory access bottle-
necks has brought forth a renewed interest in near-memory process-
ing (NMP) architectures. In this work, we propose and empirically
evaluate hybrid data structures, which are concurrent data struc-
tures custom-designed for these new NMP architectures.

We focus on cache-optimized data structures, such as skiplists
and B+ trees, that are often used as index structures in online trans-
action processing (OLTP) systems to enable fast key-based lookups.
These data structures are hierarchical, where lookups begin at a
small number of top-level nodes and diverge to many different
node paths as they move down the hierarchy, such that nodes
in higher levels benefit more from caching. Our proposed hybrid
data structures split traditional hierarchical data structures into a
host-managed portion consisting of higher-level nodes and an NMP-
managed portion consisting of the remaining lower-level nodes,
thus retaining and further enhancing the cache-conscious optimiza-
tions of their conventional implementations. Although the idea
might seem relatively simple, the splitting of the data structure
prompts new synchronization problems, and careful implementa-
tion is required to ensure high concurrency and correctness.

We provide implementations of a hybrid skiplist and a hybrid
B+ tree, and we empirically evaluate them on a cycle-accurate full-
system architecture simulator. Our results show that the hybrid
data structures have the potential to improve performance by more
than 2× compared to state-of-the-art concurrent data structures.

CCS CONCEPTS
• Theory of computation → Data structures design and analysis;
Concurrent algorithms; • Hardware → Emerging architectures.
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1 INTRODUCTION
The memory wall [64], which refers to the increasing performance
gap between processor speeds and memory access speeds, has been
a well-known issue for nearly three decades. Moreover, its impact
has become more pronounced than ever in recent years with the
ever-increasing number of data-intensive applications. Designing
systems and hardware that alleviate the memory bottleneck has
since been a major concern, and this has sparked a renewed interest
in near-memory processing (NMP) architectures that move compu-
tation physically close to memory. While NMP architectures do not
cut down latencies inherent to DRAM, they reduce performance
degradation and energy consumption caused by data movement on
long and narrow off-chip interconnects.

In this work, we propose and empirically evaluate hybrid data
structures, which are concurrent data structures custom-designed
for new NMP architectures. We specifically focus on data struc-
tures that have already been heavily optimized to exploit on-chip
cache locality of conventional systems, which have benefited little
from prior NMP-based flat-combining implementations [16, 44].
However, our proposed hybrid data structures utilize the NMP ar-
chitecture more effectively in order to retain and further enhance
the data structures’ cache-locality benefits, thereby providing sig-
nificant performance gains.

Existing cache-optimized concurrent data structures have been
particularly important for in-memory online transaction processing
(OLTP) systems. Workloads on OLTP systems are typified by high
volumes of short-lived queries on relatively few data items; in order
to process such queries at scale and with minimal delay, OLTP sys-
tems employ cache-optimized concurrent data structures as index
structures that enable key-based lookups on stored data. However,
microarchitectural analyses of in-memory OLTP workloads have
shown that they are still plagued by memory stalls: long-latency
last-level cache misses due to random data accesses can account for
more than half of the execution time in otherwise highly optimized
OLTP systems [59, 60]. Despite their cache-conscious optimizations,
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index structures are fundamentally pointer-chasing data structures,
in which lookups involve iteratively accessing nodes at memory
addresses referenced by next-node pointers stored at each node.
This inevitably results in unpredictable memory access patterns,
which is exacerbated by the fact that indexes in OLTP systems are
typically significantly larger than the last-level cache [70].

Nonetheless, wemake the observation that these index structures
are often pointer-chasing yet hierarchical data structures, in which
nodes are organized by levels in a top-down hierarchy. Importantly,
the higher levels exhibit better cache locality than lower levels.
Lookups on hierarchical data structures always begin at the few
top-level nodes but diverge to many different node paths while
moving down the hierarchy. For this reason, the access frequency
of each node depends heavily on its position in the hierarchy; that
is, over several lookups, nodes in the higher levels are accessed
much more frequently (and thereby benefit more from caching)
than nodes in the lower levels.

The cache-conscious hybrid data structures that we propose
are designed based on this observation. We split a hierarchical
data structure into (i) a host-managed portion consisting of higher
levels of the data structure and (ii) an NMP-managed portion con-
sisting of the remaining lower levels. This split effectively “pins”
frequently accessed higher-level nodes to the on-chip cache with-
out any hardware modifications, and it also prevents infrequently
accessed lower-level nodes from polluting the cache.

Most prior works that utilize NMP architectures focus on alleviat-
ing memory bandwidth bottlenecks by exploiting the high internal
memory bandwidth available to near-memory compute units [2–
4, 20, 33–35, 39–41, 43, 51, 65]. However, since index lookups in
OLTP systems are limited by memory access latency rather than
memory bandwidth, our hybrid data structure design focuses on re-
inforcing cache-conscious optimizations to reduce expensive cache
misses. Note that reducing the amount of cache misses and memory
accesses improves not only the performance but also the energy
consumption of index lookup operations.

Despite the seemingly simple concept of our idea, rigorous tech-
nical detail with respect to the architecture and algorithms is re-
quired to ensure high concurrency and correctness. Conventional
concurrent data structures have been designed under the assump-
tion that any operation will be applied onto a single coherent struc-
ture, but a hybrid data structure is split into two parts, each accessed
and managed by different sets of threads (i.e., threads in the host
CPU vs. near-memory compute units). The data structure as a
whole must nevertheless be kept coherent throughout the entire
operation execution, even as multiple operations are applied con-
currently. Careful coordination among the host threads, among the
near-memory compute units, and between the host threads and
near-memory compute units is required to meet high concurrency
and correctness guarantees.

In summary, this paper makes the following contributions:
• We propose hybrid data structures, which are cache-conscious
concurrent data structures designed for new NMP architectures.
Importantly, our hybrid data structure design is applicable to any
generic NMP architecture.

• We provide a generic design pattern for hybrid data structures
and then describe concrete hybrid implementations of a skiplist
and B+ tree, two data structures widely used in OLTP systems.

NMP
partition

(NMP-capable memory)

NMP core

interconnect

NMP
partition

NMP core
host-accessible
main memory

. . .

Figure 1: Baseline NMP architecture.

• We empirically evaluate the hybrid data structures on a cycle-
accurate, full-system NMP architecture simulator. Depending on
the workload, our NMP-hybrid approach improves performance
by up to 3.12× and 2.11× for the skiplist and B+ tree, respectively,
compared to non-NMP implementations.

2 NMP ARCHITECTURE BASELINE
In this work, we use a simple and generic NMP architecture (shown
in Figure 1) so that we can focus on the broadly applicable algorith-
mic details of our proposed hybrid data structures. Specifically, we
assume that memory is separated into host-accessible main memory
and NMP-capable memory. By restricting host-accessible memory
from having any NMP capabilities, we eliminate many challenges
that NMP architectures would need to address, including data co-
herence and virtual address translation across host processors and
NMP cores. However, we expect our hybrid data structure designs
to be extensible to more sophisticated NMP architectures in which
these architectural challenges are addressed.

The NMP-capable memory is further divided into physically
separate partitions (NMP partitions). Each of these partitions is
coupled with an NMP core that has exclusive access to data in the
partition. Many recent proposals for NMP architectures—whether
2.5D/3Dmemory-based [3, 4, 24, 32, 41, 53, 56, 65, 66] or commodity
DIMM-based [22, 39, 40]—hold similar assumptions about mem-
ory partitioning and per-partition processing units, in order to
provide capacity-proportional scalability, to exploit memory-level
parallelism, and to simplify hardware design with regard to shared
memory access and data coherence.

Each NMP core is modeled as an in-order, single-cycle processor
without any on-chip caches. The NMP core is instead equipped with
a node-size hardware register that acts like a single-block cache,
which was shown to be sufficient for exploiting locality exhibited
at node granularity in NMP-based data structures [16].

3 HYBRID DATA STRUCTURE DESIGN
3.1 Overview
In this work, we focus on two data structures that are widely used
in OLTP systems: (i) skiplists [52] and (ii) B+ trees [9, 18]. Both
of these data structures are hierarchical, meaning that their nodes
are organized by levels in a top-down hierarchy. The topmost level
consists of either one node (B+ tree) or very few nodes (skiplist), and
the number of nodes at each level below is greater than the number
of nodes at the level above. Lookups on these data structures always
begin at the topmost level, but they diverge to different node paths
as the lookups move down the hierarchy. For this reason, the access
frequency of each node in the data structure depends heavily on
its position in the hierarchy; that is, nodes in the higher levels are
accessed much more frequently (and thereby benefit more from
caching) than nodes in the lower levels.

The key insight of our NMP-enabled hybrid data structures is
to leverage this skew in access frequency that stems from the data
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structure’s topology. Essentially, we divide each data structure into
a host-managed portion consisting of the higher levels of the data
structure and an NMP-managed portion consisting of the lower
levels. The host-NMP split point (i.e., the level at which to divide the
data structure) is chosen such that the entire host-managed portion
can fit within the last-level cache of the CPU, effectively “pinning”
higher-level nodes to the on-chip cache without any hardware mod-
ifications. The remaining lower levels are placed in NMP-capable
memory accessed only by NMP cores, thus preventing infrequently
accessed nodes from polluting the host cache.

Although a seemingly simple idea, rigorous technical detail at
the algorithmic level is required to ensure high concurrency and cor-
rectness in these hybrid data structures. Conventional concurrent
data structures assume that operations are applied on a single coher-
ent structure, but a hybrid data structure is divided into two parts,
each accessed and managed by different sets of threads (i.e., host
cores vs. NMP cores). Both parts must therefore be kept coherent
throughout the entire operation, prompting new synchronization
problems. Careful coordination among the host threads, among the
NMP cores, and between host and NMP cores is essential. Moreover,
while skiplists and B+ trees have similar hierarchical topologies, the
two data structures by design have different correctness conditions
for concurrent modifications, so each of the hybrid algorithms must
be designed accordingly.

For concurrency in the NMP-managed portion, we build upon
prior work that applies flat-combining [28] to NMP-based data
structures [16, 44]. We first elaborate on the implementation of
NMP-managed portions of the hybrid data structures (§3.2). The
following subsections then provide details on the hybrid skiplist
and hybrid B+ tree designs (§3.3 and §3.4, respectively). Lastly, §3.5
describes an optimization that further improves the performance
of hybrid data structures.

3.2 NMP-Managed Portion
Conventional flat-combining data structures have a single desig-
nated combiner thread that actually applies operations to the data
structure. Each concurrent thread simply posts its operation re-
quest to an assigned slot in the publication list, which the combiner
thread iterates through to check for unserved operation requests. In
NMP-based flat-combining data structures, each NMP core becomes
the combiner thread for the portion of the data structure stored
in its coupled NMP partition. We assume that each NMP core is
equipped with a small scratchpad memory, and a portion of it is
memory-mapped into the host address space so that the space can
be used as the publication list.1

In order to offload a data structure operation to theNMP-managed
portion, the host thread writes the following items to its assigned
slot in the target NMP core’s publication list:

(1) lookup key (4 bytes)
(2) associated value (for update/insert operations; 4 bytes)
(3) pointer to the node from which the NMP core should begin

its traversal (referred to as begin-NMP-traversal node; 4 bytes)
(4) operation type (read, update, insert, remove, or other opera-

tions for maintenance and debugging; 3 bits)
(5) flag indicating that the slot contains a valid operation (1 bit)

1Note that our evaluation framework (elaborated in §4) accurately models latencies
caused by memory-mapped I/O.

After offloading an operation, the host thread polls on the flag
to check the status of the operation.

In previous NMP-based data structures [16, 44], begin-NMP-
traversal node (3) was unnecessary because the NMP core traversed
the entire data structure, such that all traversals began at a fixed
sentinel node within the NMP partition. On the other hand, host-
side traversals become shortcuts into NMP-managed lower levels
in our approach, so NMP-side traversals can begin at any node
referenced from the bottommost host-managed level.

However, because the NMP core processes operations in its pub-
lication list one at a time, the begin-NMP-traversal node of an
operation may end up being modified by a concurrent operation
that gets processed earlier in the NMP core. This is a new synchro-
nization problem that affects correctness in hybrid data structures,
and therefore the hybrid skiplist and the hybrid B+ tree provide
tailored mechanisms for the NMP core to detect such issues, in
which case the NMP core aborts the operation and notifies the host
thread to retry the operation accordingly.

When the NMP core finishes processing an offloaded operation,
it writes the following to the publication list before clearing the
valid flag:

(1) retry flag if the NMP-side operation requires a retry (1 bit)
(2) return value indicating success/failure (1 bit)
(3) associated value (for read operations; 4 bytes)
(4) pointer address to node created in the NMP partition during

an insert operation (if applicable; 4 bytes)
In addition to flat-combining, which handles the correct appli-

cation of concurrent operations to the NMP-managed portion of a
hybrid data structure, the NMP-managed portion is divided across
multiple NMP partitions to increase parallelism. Because each NMP
partition is an isolated portion of memory accessed and modified ex-
clusively by its coupled NMP core, operations to different partitions
can run in parallel without data races or coherence issues.

3.3 Hybrid Skiplist
The skiplist is an ordered, pointer-chasing data structure with mul-
tiple levels of pointers at each node. Each node is assigned a height,
and a node holds next-node pointers to the succeeding node at each
level up to its height. The height is taken from a particular distribu-
tion such that all nodes are linked together at level 0 (bottommost
level), but each node at level 𝑖 is only half as likely to appear at
level 𝑖 +1. The skiplist is usually configured with log2 𝑁 total levels,
where 𝑁 is the number of key-value pairs at initialization.

A lookup on the skiplist is a top-down search through the levels.
The lookup initially traverses through next-node pointers at the
topmost level, but once it reaches a node with a key larger than the
lookup key, it backtracks to the previous node on the same level
and continues the traversal at the level immediately below. This
process is repeated until the lookup key is found. The particular
distribution of node heights allows for a logarithmic time execution,
similar to a balanced binary search tree.

The cumulative size of the top 𝑥 levels of a skiplist can be es-
timated as 2𝑥sizeof(Node). In the hybrid skiplist (Figure 2), the
number of levels to be placed in the host-managed portion is chosen
such that this is approximately equal to the last-level cache size.

The host-managed portion of the hybrid skiplist is implemented
according to the state-of-the-art lock-free skiplist [23, 29]. Nodes in
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Figure 2: Hybrid skiplist design.
the host-managed portion hold references to their counterparts in
the NMP-managed portion, in order to provide shortcuts (i.e., refer-
ences to begin-NMP-traversal nodes) for NMP-side traversals. The
NMP-managed portion is implemented according to the NMP-based
flat-combining data structures described in §3.2. Here, we simply
assume that nodes in the NMP-managed portion are distributed
across NMP partitions based on predefined, equal-size ranges of
keys. The data structure stores information on the key ranges so
that the target NMP partition for an operation can easily be deter-
mined with the lookup key. The algorithm can be extended to other
partitioning schemes for reasons such as better load balancing, but
we leave this to future work.

Guaranteeing correctness in the hybrid skiplist is relatively
straightforward. For correctness, the skiplist data structure simply
needs to always maintain the skiplist property [30], which is that
the set of nodes at every level 𝑖 is a subset of all nodes at level 𝑖 − 1.
The lock-free skiplist and the NMP-based flat-combining skiplist
both correctly maintain these properties by applying insertions
from bottom to top and by applying removals from top to bottom.
In the hybrid skiplist, we ensure the same by applying insertions
in the NMP-managed portion first, and then in the host-managed
portion; likewise, removals are applied in the host-managed portion
first, and then in the NMP-managed portion.

Data modifications in the NMP-managed portion of the data
structure that may affect correctness are cases where the begin-
NMP-traversal node of an NMP-offloaded operation is removed by
a concurrent operation processed earlier. To ensure that such mod-
ifications are detected, the NMP core always first marks a remove
target node as logically deleted, and then proceeds to physically
remove it. Because the NMP core is single-threaded, a logical and
physical removal will not happen concurrently, but the logical dele-
tion ensures that another offloaded operation does not begin its
traversal at a stale, deleted node.

Listing 1 shows pseudocode for the insert operation on the
host-side. After the initial traversal through the host-side (line 7),
the begin-NMP-traversal node for the operation is identified (lines
14-15). Then, the SEND_NMP_INSERT_OPERATION (line 16) writes
operation information to the thread’s assigned slot in the target
NMP partition’s publication list, according to the description in
§3.2. Note that most of the steps in Listing 1 apply to read, update,
and remove operations as well.

Once the operation is offloaded to a target NMP core, the NMP
core carries out its portion of the operation as described in Listing 2.
Line 7 checks if the begin-NMP-traversal node has been marked as
deleted by a concurrent operation processed earlier, in which case
the retry flag is set for the host thread (lines 8-9). The remainder of
the operation is carried out according to the single-threaded skiplist
algorithm (lines 14-25). Note that the described process is identical
across all skiplist operations.

1 bool insert(int key , int value , int thread_id) {
2 Node* preds[HOST_HEIGHT ];
3 Node* succs[HOST_HEIGHT ];
4 Node* newnode , foundnode , nmpnode = NULL;
5 int part_id , height = 0;
6 bool ret = false;
7 foundnode = find(key , head , preds , succs); // finds position

of node associated with key and fills in preds , succs
arrays with pointers to the predecessor and successor
nodes at each level

8 if (foundnode != NULL) { return false; }
9 part_id = get_partition(key);
10 height = rand_height (); // height of new node
11 if (height > NMP_HEIGHT) {
12 newnode = new Node(key , value , height -NMP_HEIGHT);
13 newnode ->nmp_ptr = NULL; }
14 if (part_id == get_partition(preds[0]->key)) {
15 nmpnode = preds[0]->nmp_ptr; }
16 SEND_NMP_INSERT_OP (); // according to Section 3.2
17 if (GET_NMP_RETRY_FLAG ()) {
18 if (newnode != NULL) { delete newnode; }
19 // retry from beginning
20 } else {
21 ret = GET_NMP_RETURN_VALUE ();
22 if (newnode != NULL) {
23 if (!ret) {
24 delete newnode;
25 return false; }
26 newnode ->nmp_ptr = GET_NMP_NODE_PTR ();
27 // From here , link newnode into host -side levels
28 // according to LF skiplist algorithm (code omitted)
29 } } return ret; }

Listing 1: Hybrid skiplist host-side insert operation.

1 Node* preds[NMP_HEIGHT ];
2 Node* succs[NMP_HEIGHT ];
3 Node* curr , foundnode , newnode;
4 // publist[i] contains operation information offloaded from

thread i
5 if (publist[i]. nmp_ptr != NULL) {
6 curr = publist[i]. nmp_ptr;
7 if (MARKED(curr)) {
8 // curr has been removed by a concurrent remove.
9 // set RETRY flag and move on to next op (code omitted)
10 }
11 } else {
12 curr = partition_head; }
13 foundnode = find(key , curr , preds , succs);
14 if (foundnode != NULL) {
15 publist[i]. return_value = 0;
16 } else {
17 newnode= new Node(publist[i].key , publist[i].value);
18 if (publist[i]. height > NMP_HEIGHT)
19 newnode ->height = NMP_HEIGHT;
20 else
21 newnode ->height = publist[i]. height;
22 newnode ->host_ptr = publist[i]. host_ptr;
23 // link newnode into skiplist according to single -threaded

skiplist algorithm (code omitted)
24 publist[i]. nmp_ptr = newnode;
25 publist[i]. return_value = 1; }

Listing 2: Hybrid skiplist NMP-side insert operation.

The hybrid skiplist retains linearizability [31], a strong correct-
ness guarantee for concurrent data structures. Linearizable data
structures are identified by linearization points, which are single
points when operations take instantaneous effect. The pseudocode
in Listings 1 and 2 shows that an insertion in the hybrid skiplist
takes instantaneous effect when the new node is linked into the
NMP-managed portion. Although we omit pseudocode for other op-
erations, removals also takes instantaneous effect when the removal
target node is removed from the NMP-managed portion.

The linearization points for successful read and update opera-
tions are points where the value associated with the target node is
successfully read or updated, whether in the host-managed or NMP-
managed portion. However, to account for concurrent insert and
update operations on the same key (where the update is offloaded
to NMP after the new node is linked in the NMP-managed portion
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Figure 3: Hybrid B+ tree design.
but before it is linked in the host-side), the NMP-side update re-
turns the target node’s host_ptr through the publication list. Using
this information, the host-side update ensures that the new value
is updated in the host-side node as well. This process guarantees
future read operations will read correctly updated values.

3.4 Hybrid B+ Tree
The B+ tree is an 𝑛-ary tree data structure consisting of a root, inner
nodes, and leaf nodes. Leaf nodes store up to 𝑛 key-value pairs in
sorted order; non-leaf nodes (i.e., the root and inner nodes) hold
up to 𝑛 child node pointers to subtrees, along with dividing keys.
A subtree to the left of a dividing key must only contain keys that
are less than or equal to the dividing key; similarly, a subtree to the
right of a dividing key must only contain keys that are greater than
the dividing key. Lookups on a B+ tree require top-down pointer-
chasing from the root to the leaf containing the lookup key, with
the traversal path guided by dividing keys in the inner nodes.

The B+ tree also maintains the following invariants: (i) each non-
root inner node has at least ⌈𝑛/2⌉ children, (ii) each leaf node holds
at least ⌈𝑛/2⌉ items, and (iii) the path from the root to any leaf node
is the same length. Note that the value of 𝑛 for in-memory OLTP
systems is chosen such that the B+ tree nodes align with the cache
block size (typically 64 or 128 bytes), which is to fully exploit spatial
locality [54]. The resulting 𝑛 is often fairly large—for example, 𝑛 is
16 for the B+ tree used in the DBx1000 framework [67].

To simplify the hybrid B+ tree’s configuration phase, we assume
that the initial B+ tree is constructed over an existing database
table. This is not uncommon when building index structures for
in-memory OLTP systems, which is a major use case of B+ tree
structures. Furthermore, for a sufficiently large B+ tree, the hybrid
B+ tree does not require frequent reconfiguration: the initial setup
becomes inappropriate only when the host-managed portion be-
comes significantly larger than the last-level cache, which requires
the B+ tree to grow by several magnitudes in size.2 We assume that
enough memory (including the NMP partitions) is provisioned to
account for the data structures and their expected growth.

Figure 3 illustrates the hybrid B+ tree design. The hybrid B+
tree is first constructed entirely in the host-managed region. The
host-NMP split point for the hybrid B+ tree is determined based
on the cumulative size of the top 𝑥 levels. This is approximately
(1 + 𝑟 ∑𝑥−2

𝑖=0 𝑚𝑖 )sizeof(Node), where 𝑟 is the number of children
from the root node and 𝑚 is the average fanout of the non-root
inner nodes.𝑚 ranges between 1

2𝑛 and 2
3𝑛, depending on the order

in which initial keys are inserted into the tree [58].

2In such cases, the hybrid B+ tree will indeed need to be reconfigured. Because this
would be an infrequent operation, we expect that it could be done during amaintenance
phase, when no other concurrent operations are made on the B+ tree. However, we
leave this to future work.

The lower levels for the NMP-managed portion are divided into
NMP partitions at range-based boundaries chosen based on the
root’s grandchildren. For example, if the root has exactly 𝑟𝑚 grand-
children and the system has 𝑝 NMP partitions, lower levels under
the first 𝑟𝑚

𝑝 grandchildren nodes are pushed down to the first parti-
tion. Pointers from the bottommost level nodes of the host-managed
portion are references to child nodes stored in the NMP partitions.
The NMP partition information is stored with the pointer reference:
since B+ tree nodes are aligned at 64 or 128 bytes, we exploit unused
least significant bits of the NMP-side node pointer to store the cor-
responding NMP partition’s ID. The initialization phase completes
once all lower levels constituting the NMP-managed portion are
pushed down to appropriate NMP partitions.

Once the initialization phase is complete, synchronizing con-
current operations becomes the challenge in hybrid B+ trees. In
general, providing concurrency in B+ trees is nontrivial, for in-
sertions may trigger structural changes across multiple levels to
satisfy B+ tree invariants. Although infrequent, structural changes
in upper levels are driven by changes in lower levels, and changes
at all affected levels must be completed in order to bring the B+
tree to a correct state. This is a major difference from the skiplist,
where the linking of an inserted node at each level is a stand-alone
operation that does not interfere with the correctness of the overall
structure. While the same applies to deletions, we relax the B+ tree
invariant on the minimum number of items in the leaf node to
simplify synchronization with regard to remove operations, which
is an approach also taken in prior work [36, 49, 57, 69]. Even so,
the hybrid B+ tree requires a more complicated synchronization
method than the hybrid skiplist.

Furthermore, the hybrid B+ tree must be capable of synchro-
nizing concurrent modifications in the begin-NMP-traversal node.
For example, in the hybrid B+ tree of Figure 3, an insert(key=57)
operation will split nodes D and C, and in turn, node B will be
updated to hold a reference to node C′ that has been split from C.
However, a concurrently offloaded operation may also have had the
original node C as its begin-NMP-traversal node; if this operation
gets processed by the NMP core after the insert(57), it may be
applied incorrectly, for some subtrees under the original node C
cannot be accessed from node C at that point. The NMP-side of the
hybrid B+ tree algorithm must be capable of detecting such cases
to ensure correctness.

Sequence locks [11] are at the core of our hybrid B+ tree algorithm.
The sequence lock is essentially a sequence number that is atomically
incremented at the beginning and end of a critical section that
involves writes. An operation that reads data protected by the
sequence lock checks the sequence number at the beginning and
end of its operation to verify that the data has remained unchanged
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1 // host -managed portion:
2 struct InnerNode {
3 volatile int seqnum;
4 int level;
5 int slotuse; // # of slots in use
6 int dividing_keys[SLOTMAX ];
7 Node *children[SLOTMAX +1]; };
8 //NMP -managed portion:
9 struct InnerNode {
10 int parent_seqnum; //for synchronization at host -NMP boundary
11 int level;
12 short lock; // 1 if locked , 0 otherwise
13 short slotuse;
14 int dividing_keys[SLOTMAX ];
15 Node *children[SLOTMAX +1]; };
16 // LeafNodes have the same structure , except they hold data
17 // keys and values , instead of dividing keys and child ptrs.

Listing 3: Hybrid B+ tree node definitions.

in the meanwhile (if the data has changed, the operation can abort
and restart). Because atomic operations on the sequence locks are
issued only for writes, synchronization traffic is reduced compared
to read-write locks. We also use the sequence numbers as version
numbers for synchronization across the host-NMP boundary.

Listing 3 specifically shows how nodes are defined in our hybrid
B+ tree implementation. Each node in the host-managed portion
has a sequence number associated with it (line 3). However, because
the NMP-managed portion is accessed by a single NMP core only,
the sequence lock is unnecessary. Each node in the NMP-managed
portion instead has a simple lock (line 12). It also keeps track of its
parent node’s latest sequence number (line 10), which is used to
manage synchronization issues at the begin-NMP-traversal node.

To explain how these synchronization mechanisms are used
to ensure correctness, we describe the insert algorithm of the
hybrid B+ tree. The pseudocode in Listing 4 shows the host-side
of the algorithm. As the host thread traverses down the tree, it
records all nodes on the traversal path and their sequence numbers
at the time of access (lines 6-7, 12-14). If a destination child node
is being modified at the time of access, the traversal first waits
for the write on the child to complete (lines 12-14). Afterwards,
if the current node has remained unchanged, the traversal moves
down the tree (lines 16-18); otherwise, the traversal moves back
up the tree to the lowest ancestor node that has not been modified
during the operation’s execution (iterations of lines 19-22). Upon
reaching the last host-side level of the B+ tree, the host thread
offloads the insert operation to an appropriate NMP core (line
24). The appropriate NMP-side child node reference held in the last
host-side node becomes the begin-NMP-traversal node.

Listing 5 shows pseudocode for the NMP-side insert algorithm.
Lines 3-8 deal with synchronization at the host-NMP boundary,
but we first describe the insertion process assuming that the begin-
NMP-traversal node has not been split by a concurrent operation.
In lines 9-11, the NMP core traverses down the tree, recording
all nodes along the traversal path. Upon reaching the bottom, the
NMP core traverses back up the path to lock each node that will
be affected by the insert, starting from the leaf node (lines 13-19).
Whether a node will be split is determined by the number of slots in
use: if a node is currently full, the insertion will split the node, and
in turn its parent node will be affected and must be locked as well.
This is iteratively applied until a non-splitting node is reached. If all
affected nodes are contained within the NMP-managed portion, the
insertion takes place immediately, following the single-threaded
B+ tree insert algorithm, and the path is unlocked (lines 25-29).

1 Node* path[TREE_HEIGHT ]; int local_seqnum[TREE_HEIGHT ];
2 Node* curr , child = NULL; int curr_level = 0;
3 bool retry_from_root = true;
4 while (retry_from_root) {
5 curr = root; curr_level = curr ->level;
6 local_seqnum[curr_level] = curr ->seqnum;
7 path[curr_level] = curr;
8 if (local_seqnum[curr_level] % 2 != 0) continue;
9 while (curr_level < TREE_HEIGHT) {
10 child = find_child(curr , key);
11 if (curr_level > LAST_HOST_LEVEL) {
12 do {
13 local_seqnum[curr_level -1] = child ->seqnum;
14 } while (local_seqnum[curr_level -1] % 2 != 0);
15 path[curr_level -1] = child;
16 if (curr ->seqnum == local_seqnum[curr_level ]) {
17 curr_level --;
18 curr = child;
19 } else {
20 // curr has been modified , move back up the path
21 curr_level ++;
22 curr = path[curr_level ]; }
23 } else { // reached last host -side level
24 SEND_NMP_INSERT_OP (); // according to Section 3.2
25 if (GET_NMP_RETRY_FLAG ()) break; // retry from root
26 if (GET_NMP_LOCK_PATH ()) { // lock nodes on path
27 locked_all = false;
28 for (i = LAST_HOST_LEVEL; i < TREE_HEIGHT; i++) {
29 if (!CAS(path[i]->seqnum , local_seqnum[i],

local_seqnum[i]+1)) {
30 // failed to lock node at level i:
31 // unlock locked nodes on path (code omitted)
32 SEND_NMP_UNLOCK_PATH_OP ();
33 break; } // retry insert from root
34 if (path[i]->slotuse < INNER_SLOTMAX) {
35 locked_all = true; break; } }
36 if (locked_all) {
37 SEND_NMP_RESUME_INSERT_OP ();
38 retry_from_root = false;
39 // RESUME_INSERT is guaranteed to succeed.
40 // From here , complete host -side insertion process
41 // following the single -threaded insert algorithm ,
42 // unlock all nodes on path and return (code omitted)
43 }
44 } else { // of if GET_NMP_LOCK_PATH
45 retry_from_root = false;
46 // insert completed within NMP partition. return.
47 } break; } } }

Listing 4: Hybrid B+ tree host-side insert operation.

1 Node *path[TOP_NMP_LEVEL +1];
2 Node *curr = publist[i]. nmp_ptr;
3 if (curr ->parent_seqnum > publist[i]. parent_seqnum) {
4 // curr node has been split by concurrent op.
5 // set RETRY flag and move on to next op. (code omitted)
6 } else if (curr ->parent_seqnum < publist[i]. parent_seqnum) {
7 // parent had been split by insertion in sibling node
8 curr ->parent_seqnum = publist[i]. parent_seqnum; }
9 while (curr ->level > 0) {
10 path[curr ->level] = curr;
11 curr = find_child(curr , publist[i].key); }
12 path [0] = curr;
13 locked_all = false;
14 for (i = 0; i < TOP_NMP_LEVEL; i++) {
15 if (path[i]->lock == 0) {
16 path[i]->lock = 1;
17 if (path[i]->slotuse < SLOTMAX) {
18 locked_all = true;
19 break; }
20 } else {
21 // path[i] has already been locked by a concurrent insert.
22 // unlock nodes on path locked by this operation ,
23 // set RETRY flag , and move on to next op (code omitted)
24 } }
25 if (locked_all) {
26 // 1. follow single -threaded insert algorithm to complete
27 // the insertion , 2. unlock locked nodes , and 3. increment
28 // the parent_seqnum of begin -NMP -traversal node and its
29 // split -off sibling. (code omitted)
30 } else {
31 // set LOCK_PATH flag and move on to next op (code omitted)
32 }

Listing 5: Hybrid B+ tree NMP-side insert operation.
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However, if even the topmost level node on the NMP-side path
requires a node split, the NMP core notifies the host thread (via the
publication list slot) to lock nodes on the host-side path accordingly
(lines 30-32). In this case, the NMP-side nodes remain locked, in
order to prevent concurrent insert or remove operations from
modifying any of the affected nodes in the meanwhile (lines 20-24).

If the host thread receives a LOCK_PATH command from the NMP
core, it proceeds to lock (i.e., increment the sequence numbers of)
affected nodes on the host-side path, based on the traversal path
and sequence numbers that it recorded during the initial traversal
down the tree (Listing 4: lines 26-35). Once all affected nodes are
locked, the host thread offloads a RESUME_INSERT operation to the
NMP core (line 37). However, if the locking fails at any point (line
29), the host thread unlocks all acquired locks on the host side (lines
30-31), notifies the NMP core to unlock the path accordingly (line
32), and then retries the operation from the beginning (line 33).

Once the NMP core receives the RESUME_INSERT operation, the
NMP core completes the insertion and unlocks the NMP-side path,
for the insertion is guaranteed to succeed at this point. Before
notifying the host thread of the operation completion, the NMP core
increments the parent sequence number of the topmost level nodes
on the operation path (including the newly split-off node) to reflect
the eventual unlocked sequence number of their parent nodes.3
After the NMP-side process completes, the host thread completes
its portion of the insertion process and unlocks the affected nodes
(i.e., increments their sequence numbers).

The parent sequence number recorded in the begin-NMP-traversal
node (hereby referred to as recorded parent#) is used for synchro-
nization at the host-NMP boundary. When a host thread offloads an
operation to the NMP core, it writes the sequence number of the last
host-side node (i.e., parent of the begin-NMP-traversal node) to the
publication list slot, in addition to other operation information men-
tioned in §3.2. Before the NMP-side tree traversal begins, the NMP
core compares the offloaded parent sequence number (referred to as
offloaded parent#) against the recorded parent# (Listing 5: lines 2-8).
If the recorded parent# is greater than the offloaded parent#, this
indicates that the host-side parent node has been modified after the
operation offload, due to a node split in the begin-NMP-traversal
node. This implies that the corresponding leaf node for the opera-
tion may have become unreachable from the begin-NMP-traversal
node, so the NMP core notifies the host thread to retry this op-
eration. However, there could also be cases where the offloaded
parent# is greater than the recorded parent#. This indicates that the
host-side parent node had been modified due to a split in a sibling
node; in this case, the recorded parent# is simply updated to the
offload parent# for consistency.

Synchronizing read, update, and remove operations is relatively
straightforward. These operations follow the insert operation’s
initial host-side and NMP-side traversal process (Listing 4: lines
4-22, Listing 5: lines 2-11). Once the NMP core reaches the leaf node,
read or update operations can be applied immediately. However,
the remove operation cannot be applied if the leaf node is in a locked
state, for the removal affects the number of slots in use at the node,

3When a node splits, the split-off node replicates the sequence number (in NMP-side
nodes, the parent sequence number) of the original node. This ensures sequence
number consistency between the host-side parent and the NMP-side children, even
after node splits.
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Figure 4: The throughput of data structure operations when
NMP calls are (a) blocking and (b) non-blocking.

which in turn affects the node split process being prepared by a
concurrent insertion. In this case, the remove operation is aborted
and retried from the beginning.

3.5 Optimization: Non-blocking NMP Calls
In our proposed hybrid data structures, once a host thread executing
a data structure operation reaches the bottom level of the host-
managed portion, it sends the operation request to an appropriate
NMP core. These NMP calls are assumed to be blocking operations;
that is, the host thread actively waits until the NMP-side of the
operation is done. This poorly utilizes compute resources and limits
throughput, as shown in Figure 4a.

In order to increase concurrency and overall throughput, we
modify the NMP calls to be non-blocking. With non-blocking NMP
calls, a host thread can offload an operation to an NMP core and
immediately move on to process the next pending operation while
the NMP core does its portion of the work (Figure 4b). Host threads
can maintain a list of ongoing operations to later retrieve results
returned by NMP cores.

Data structure operations with non-blocking NMP calls involve
only minor changes to the high-level API. In typical data structure
APIs, a high-level function call simply returns a Boolean flag indi-
cating the success of an operation. With non-blocking NMP calls,
the function call should instead return an operation ID number as
an acknowledgment that the operation is now in progress. The API
should also be extended with a separate function that takes the
operation ID as input in order to check on the operation’s status
and retrieve any return values.

4 EVALUATION METHODOLOGY
Because NMP-capable memory devices are not readily available
yet, we rely on architecture simulations to evaluate our proposed
hybrid data structures. We use the gem5-based [10] SMCSim simula-
tor [6, 14], which is a cycle-accurate, full-system NMP architecture
simulator that was used for prior NMP-based concurrent data struc-
ture evaluations [16].

Table 1 outlines the simulator configurations. Cycle-accurate
architecture simulations by nature result in long execution times,
especially as more architecture components (e.g., CPUs, caches,
memory devices) are added to the simulation. Simulating even
one second of real execution time may take more than 24 hours,

Session 7: Concurrency and Synchronization SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

327



SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA. Jiwon Choe, Andrew Crotty, Tali Moreshet, Maurice Herlihy, and R. Iris Bahar

Table 1: Evaluation framework configuration.
Host Configuration

Host cores 8 out-of-order processors (ARMv7 Cortex-A15)
2GHz frequency, 1 thread/core

L1 cache 32kB icache, 64kB dcache, private
2-way set-associative LRU
2-cycle latency, 128B/block

L2 cache 1MB, shared, 8-way set associative LRU
20-cycle latency, 128B/block
Memory Configuration

1 HMC w/ 16 memory vaults total (8 main memory vaults, 8 NMP vaults)
128MB/vault (total 2GB), 8 DRAM banks/vault
𝑡𝑅𝑃 : 13.75ns, 𝑡𝑅𝐶𝐷 : 13.75ns, 𝑡𝐶𝐿 : 13.75ns, 𝑡𝐵𝑈𝑅𝑆𝑇 : 3.2ns

NMP Core Configuration
NMP cores 1 in-order single-cycle processor/vault

(gem5 TimingSimpleCPU), 2GHz frequency
128B buffer in memory controller

scratchpad memory 40kB/NMP core, 8kB reserved for host memory-map,
stores instructions and program stack.

depending on the configuration. To run experiments in a reasonable
time frame, the simulator was configured with a relatively small
memory size (1GB host-accessible main memory, 1GB NMP-capable
memory) and 8 host and NMP cores each. Only two levels of cache
were used in order to make cache sizes proportional to the memory
size. Using the relatively small baseline system, we show that our
hybrid data structures can improve performance, and we project
that the improvements will carry through to larger systems.

For results and analysis in this paper, we assess data structure
performance in terms of operation throughput, which is the number
of data structure operations completed across all available threads
in a given period of time. For a more complete analysis (including
energy consumption), please see [15].

5 RESULTS & ANALYSIS
5.1 Baseline Evaluation
For our baseline analysis, we used a predefined core workload from
the Yahoo! Cloud Serving Benchmark (YCSB) [19] framework, which
provides (i) keys to populate the data structure and (ii) operations
to perform, both based on distributions that appear in realistic
cloud OLTP applications. The core workload we used is YCSB-C, a
read-only workload with a zipfian distribution in accessed keys.
Skiplists.We compare the operation throughputs of hybrid skiplists
with blocking and non-blocking NMP calls (hybrid-blocking and
hybrid-nonblocking, respectively) against the NMP-based skiplist of
prior work [16] and the lock-free skiplist [23, 29] as a non-NMP ref-
erence. In particular, hybrid-nonblocking4 denotes that we allowed
each host thread to have up to 4 NMP calls in-flight at a time.

We initialized each skiplist with 222 key-value pairs (generated
by the YCSB framework according to core workload characteristics),
which results in a skiplist of size 0.5GB with 22 total levels. We
configured the hybrid skiplists to hold the top 13 levels in the host-
managed portion, which makes its size roughly equivalent to the
last-level cache (LLC) size.

Figure 5a shows the operation throughput of various skiplist
implementations with YCSB-C. We plot the throughput across vary-
ing numbers of host threads to show scalability with increasing
numbers of threads. Although the skiplist is significantly larger
than the LLC size (512×), lock-free still shows higher operation
throughput than NMP-based, which is similar to the results seen
in prior work [16]. However, our hybrid-blocking skiplist in-
creases the throughput by 99% over NMP-based and by 46%
over lock-free at 8 concurrent threads.
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Figure 5: Skiplist baseline evaluation with YCSB-C.
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Figure 6: B+ tree baseline evaluation with YCSB-C.

The performance improvement with hybrid skiplists comes from
significantly reducing the number of DRAM reads. As shown in
Figure 5b, hybrid skiplists incur only two-thirds the amount of
DRAM reads incurred by the lock-free skiplist, and only 40% the
amount incurred by the NMP-based.

The performance improvement with hybrid skiplists becomes
even more substantial with non-blocking NMP calls, which hide
NMP operation offload costs and reduce the idle time of both host
and NMP cores. (Note that the average number of memory reads
remains the same across hybrid-blocking and hybrid-nonblocking.)
At 8 concurrent threads, hybrid-nonblocking4 shows 2.46×
the throughput of lock-free.
B+ trees.We compare the performance of our hybrid B+ trees with
blocking and non-blocking NMP calls (hybrid-blocking and hybrid-
nonblocking, respectively) against a non-NMP, host-only B+ tree.
Like the host-managed portion of the hybrid B+ tree, the host-only
B+ tree uses sequence locks for concurrency.

We configured the B+ tree so that each node is 128 bytes, which
is a typical B+ tree node size for in-memory OLTP systems [54]
where B+ trees are commonly used. In our implementation, the
128-byte node size allowed each leaf node to hold up to 14 key-
value pairs and each non-leaf node to hold up to 15 children. We
populated each B+ tree with approximately 30M key-value pairs
and inserted the items in sorted order. This generated a balanced
initial B+ tree of 9 total levels and approximately 0.57GB total size.
The top 6 levels (summing up to 1.14MB in size) were placed in the
host-managed portion for the hybrid implementations.

Figure 6a shows that the hybrid-blocking B+ tree yields 18%
higher throughput than host-only. While 18% increase is not
insignificant, the improvement is relatively small compared to the
hybrid skiplists, where hybrid-blocking yielded nearly 50% higher
throughput than lock-free (Figure 5a).
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Table 2: Host-NMP communication costs.
Event Delay
Operation valid flag written from host reaching NMP core 65–80ns
Operation completion flag written from NMP core reaching host 88–96ns
Last-level cache miss 100–120ns
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Figure 7: Skiplist sensitivity evaluation: normalized opera-
tion throughput (lock-free 100-0-0 throughput as baseline).

The reason for the relatively small increase in operation through-
put is the small number of memory reads needed for each operation
relative to the cost of offloading operation requests to NMP cores.
Figure 6b shows the average number of DRAM reads per opera-
tion. The host-only B+ tree makes approximately 9 DRAM reads
per operation, and the hybrid B+ trees make 3 DRAM reads. While
the reduction in the number of memory reads is nearly 3×, the
absolute number of reads is still small, particularly compared to the
skiplists, where lock-free and hybrid made 36 and 24 memory reads
per operation, respectively.

On a related note, the delays in offloading operation requests
to NMP cores are shown in Table 2. These delays were measured
across multiple iterations of a single operation offload request in
otherwise same settings as the baseline B+ tree evaluation (i.e.,
same initial B+ tree size, same number of host-side levels, and
same architectural configurations). Note that the delays just for
communicating operation information to and from the NMP core
sum up to be comparable to 1-2 LLC miss delays. When the data
structure operation incurs only a few memory reads, this overhead
can dominate the performance of hybrid-blocking data structure
implementations. However, nonblocking NMP calls effectively hide
this overhead and significantly improve the hybrid B+ tree’s perfor-
mance. At 8 concurrent threads, hybrid-nonblocking4 yields
2.11× the throughput of host-only.Moreover, larger, taller B+
trees will have longer node traversals, in which case the hybrid
implementations will be more advantageous.

5.2 Sensitivity Analysis
We also provide a sensitivity analysis to show how the hybrid data
structures scale with concurrent modifications. We generated our
own workloads with varying ratios of insertions and removals and
uniform distribution of accessed keys. In Figures 7 and 8, X-Y-Z of
the x-axis denotes the ratio of read-insert-remove operations in
the workload. The initial configurations of the skiplists and the B+
trees remain the same as our baseline evaluation experiments.

In each experiment, we fixed the number of concurrent host
threads to 8 (the maximum number of host threads available in the
simulated system). Also, for faster simulation, the experiments were
executed with in-order host cores. Note that the general trends of
the results are still the same as using out-of-order host cores, since
memory access (not CPU cycles) is the main performance-limiting
factor in these data structures.
Skiplists. Figure 7 shows the operation throughput of the various
skiplist implementations across the different workloads, normalized
against the throughput of the lock-free skiplist with the 100-0-0

0

0.5

1

1.5

100-0-0 80-10-10 70-15-15 60-20-20 50-25-25 50-25-25
fully uniform

n
o

rm
al

iz
ed

th
ro

u
gh

p
u

t

workload (read-insert-remove)

host-only

hybrid-blocking

hybrid-nonblocking4

Figure 8: B+ tree sensitivity evaluation: normalized operation
throughput (host-only 100-0-0 throughput as baseline).

0

2

4

6

8

10

100-0-0 80-10-10 70-15-15 60-20-20 50-25-25 50-25-25
fully uniform

# 
m

em
o

ry
 r

ea
d

s
p

er
 o

p
er

at
io

n

workload (read-insert-remove)

host-only

hybrid

Figure 9: B+ tree sensitivity evaluation: average number of
memory reads per operation.

workload. Although increasing concurrent modifications reduces
the throughput across all skiplist implementations, it has relatively
smaller impact on the hybrid skiplists. With the 50-25-25 work-
load, lock-free, hybrid-blocking and hybrid-nonblocking4’s through-
puts are 80%, 90%, and 93% of their throughputs with the 100-0-0
workload, respectively. In other words, the hybrid skiplists have
relative advantage with more concurrent modifications. At
50-25-25, hybrid-blocking and hybrid-nonblocking4 each have 1.61×
and 3.12× the throughput of lock-free.
B+ trees. The workloads for the B+ tree sensitivity analysis were
generated with the following additional characteristics. While the
keys accessed for read and remove operations were uniformly
distributed across the entire key space, the insert keyswere chosen
so that insertions in the hybrid B+ trees would happen at the last leaf
node (in terms of incrementing keys) of each NMP partition. This
was in order to forcefully incur maximum possible node splits, while
still evenly distributing the insertions across the NMP partitions.4
To verify how the node splits impact performance, we also used a
50-25-25 fully uniform workload, in which even the insertions were
uniformly distributed across all leaf nodes. This workload did not
incur any node splits, despite the high ratio of insert operations.

Figure 8 shows the operation throughput of the various B+ tree
implementations, normalized against the throughput of the host-
only B+ tree with the 100-0-0 workload. First, we note that the
throughput of hybrid-blocking decreases slightly with increasing
amounts of modifications and node splits. With the 50-25-25 work-
load, hybrid-blocking yields 10% less throughput than the same
implementation with the 100-0-0 workload; with the 50-25-25 fully
uniform workload that does not incur node splits, the throughput is
7.5% less. Even so, hybrid-blocking shows performance compa-
rable to host-only across all workloads.With the 50-25-25 work-
load, where hybrid-blocking is least advantageous, hybrid-blocking
still yields 93.5% of the throughput of host-only.

On the other hand, the performance of host-only slightly in-
creases by up to 2.7% with more modifications. This slight improve-
ment in performance is due to better cache locality. Because the
insertions in these workloads are targeted at specific leaf nodes to
incur maximum node splits, nodes on the insertion target paths

4If operations are heavily targeted to a single NMP partition, operations will serialize
in the specific partition and become the performance bottleneck. This is a limitation
of the hybrid data structures that could be addressed in future work.
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are likely to be accessed from the on-chip cache. Figure 9 shows
that this is indeed true: with the host-only B+ tree, the number of
memory reads per operation decreases with increasing insertion
ratios. The 50-25-25 fully uniform workload eliminates the cache
locality benefits, and in this case, host-only’s operation throughput
decreases by 6% compared to the read-only workload. In fact, this
workload causes hybrid-blocking to have a relative advantage (6%
higher throughput) over host-only.

Lastly, we note that regardless of the workload, hybrid-
nonblocking4 yields approximately 50% higher throughput
thanhost-only. More specifically, the improvements in throughput
range from 46%, with the 50-25-25 workload where hybrid is least
advantageous, to 60%, with the 50-25-25 fully uniform workload
where hybrid is most advantageous.

6 RELATEDWORK
Data structures with NMP. Liu et al. [44] proposed NMP-based
concurrent data structure algorithms, which Choe et al. [16] exten-
sively evaluated using a full-system architecture simulator. Other
prior work [32, 34, 45, 56] designed near-memory hardware accel-
erators for pointer-chasing data structures. However, none of these
works considered the on-chip cache locality of the data structures,
since pointer chasing occurs in the near-memory compute units.

Kang et al. [38] presented an NMP-based skiplist that provides
better load-balancing among NMP modules. Their algorithm also
divided the skiplist into upper-level and lower-level nodes, but the
upper-level nodes were replicated in each NMP partition, unlike
our work in which they are placed in the on-chip cache.

Graph processing applications with NMP [3, 20, 48, 71, 72] may
seem similar to data structures in their pointer-chasing aspect. How-
ever, they are fundamentally different applications with different
data traversal patterns and data partitioning strategies; thus, the
optimizations are not transferable.
Locality-aware NMP work offloading. Some works suggested
locality-aware offloading of NMP operations at instruction granular-
ity, either through programmer input and runtime detection [4] or
compile-time techniques [27]. Tsai et al. [61] dynamically mapped
threads to host processors or NMP cores based on per-thread cache
miss rates and cache resource contention. Livia [46] goes a step
further and schedules tasks (defined by a programming model) to
compute units placed throughout the entire memory hierarchy,
including at each cache level. Kandemir et al. [37] also presented
compiler-based techniques to optimally co-locate data and compu-
tation throughout the memory hierarchy.

Other works [33, 51] focused on GPU-based NMP architectures
and devised techniques to divide data and work between main GPU
cores and near-memory GPU cores. To the best of our knowledge,
our work is the first to take an algorithm-based approach with
data structures to provide locality- and architecture-aware data
placement and work division with NMP.
Latency-aware data structures. Other data structure designs
have also treated particular levels of hierarchical data structures
differently to improve performance. NUMASK [21] constructed
different index layers (upper levels) for each NUMA zone, which al-
lowed index traversals to access NUMA-local data only. DLTree [17]
exploited the fact that higher levels of a tree change much less fre-
quently than lower levels to compact the upper levels together for

better cache locality. FPTree [50] is a persistent B+ tree that persists
only the bottommost level containing the actual data in non-volatile
memory and maintains the upper levels in faster DRAM. To the best
of our knowledge, our work is the first to exploit the data structure
hierarchy in the context of NMP architectures.

There are also many other cache-conscious data structure de-
signs (e.g., [8, 12, 42, 47, 55, 62]), but these mostly attempt to reduce
cache invalidation traffic or improve data layout for better spatial
locality. Our work focuses on adapting hierarchical data structures
to NMP architectures in a way that enhances their cache locality.

Some recent concurrent data structure designs leveraged syn-
chronization techniques similar to the ones used for our NMP-
hybrid data structures. Node Replication for NUMA-aware data
structures [13] used flat-combining to batch operations and reduce
synchronization overhead across NUMA nodes. MEDS [63] sepa-
rated data into elastic partitions based on ranges of keys, and the
data structure maintained separate layers to navigate operations to
partitions and synchronize operations within each partition.

7 CONCLUSION & FUTUREWORK
This paper proposed a new, hybrid approach to using NMP archi-
tectures to improve the performance of cache-conscious concurrent
data structures. Specifically, we focused on hierarchical data struc-
tures where cache locality is high when traversing higher-level
nodes but deteriorates as traversals descend into lower levels. Our
hybrid data structures place higher-level nodes in the host’s on-chip
cache and lower-level nodes in NMP-capablememory, rendering the
cache more effective. NMP calls can also be non-blocking in hybrid
data structures, enabling even greater concurrency. Our empirical
evaluation showed that hybrid skiplists and hybrid B+ trees can
yield significant performance gains compared to state-of-the-art
implementations on conventional architectures.

An important next step is to implement and evaluate the pro-
posed hybrid data structures on real NMP hardware. Although
not yet commercialized as an off-the-shelf product, UPMEM has
recently made its NMP-capable memory device [22] available to
interested users [25, 26]. Another potential avenue for future work
involves extending hybrid data structures to work with more so-
phisticated NMP architectures, such as when host and NMP cores
share the memory space. Moreover, since hybrid data structures
focus on reducing cache miss latencies rather than exploiting high
internal memory bandwidth offered by certain NMP-enabling tech-
nologies, our algorithmic optimizations inspired by NMP can also
be complemented with non-NMP accelerators that support generic
data structures (e.g., QEI [68]).

Lastly, one noteworthy limitation of our current approach arises
with highly skewed workloads. In such cases, frequently accessed
nodes of traditional data structures are likely to remain in the
on-chip cache, resulting in better performance than our hybrid
versions that always force lower-level nodes to remain in NMP-
managed memory. One possible solution is to enhance hybrid data
structures with self-adjusting algorithms (e.g., biased skiplists [7],
splay-lists [5], CBTree [1]) to dynamically push frequently accessed
nodes to the host-managed region. Nonetheless, our work has laid
the foundations for many promising opportunities for future work,
andwe look forward to seeing follow-upworks that further enhance
the effectiveness of NMP-hybrid data structures.
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